
UPC Overview 
http://upc.lbl.gov  

 Katherine Yelick 
NERSC Director"

Lawrence Berkeley National Laboratory 

2/7/11" 1"Cray XE Training"

What’s Wrong with MPI Everywhere

•  We can run 1 MPI process per core (“flat MPI”)
-  This works now on dual and quad-core machines
-  It will work on 12-24 core machines like Hopper as well

•  What are the problems?
-  Latency: some copying required by semantics
- Memory utilization: partitioning data for separate address space

requires some replication
•  How big is your per core subgrid? At 10x10x10, over 1/2 of the points

are surface points, probably replicated
•  Weak scaling: success model for the “cluster era;” will not be for the many core

era -- not enough memory per core
- Heterogeneity: MPI per CUDA thread-block?

•  Approaches
- MPI + X, where X is OpenMP, Pthreads, OpenCL, TBB,…
-  A PGAS language like UPC, Co-Array Fortran, Chapel or Titanium

2/7/11" 2"Cray XE Training"

2/7/11" Cray XE Training" 3"

PGAS Languages

• Global address space: thread may directly read/write remote data
•  Hides the distinction between shared/distributed memory

• Partitioned: data is designated as local or global
•  Does not hide this: critical for locality and scaling

G
lo

ba
l a

dd
re

ss
 s

pa
ce
"

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"
•  UPC, CAF, Titanium: Static parallelism (1 thread per proc)

•  Does not virtualize processors
•  X10, Chapel and Fortress: PGAS,but not static (dynamic threads)

2/7/11" Cray XE Training" 4"

UPC Outline

1.  Background
2.  UPC Execution Model
3.  Basic Memory Model: Shared vs. Private Scalars
4.  Synchronization
5.  Collectives
6.  Data and Pointers
7.  Dynamic Memory Management
8.  Performance
9.  Beyond UPC

2/7/11" Cray XE Training" 5"

Context

• Most parallel programs are written using either:
- Message passing with a SPMD model (MPI)

•  Scales easily on clusters
- Shared memory with threads in OpenMP, Threads

•  In practice, requires shared memory hardware
• Partitioned Global Address Space (PGAS) Languages take

the best of both:
- Global address space like threads (programmability)
- SPMD parallelism like most MPI programs (performance)
- Local/global distinction, i.e., layout matters (performance)

History of UPC
•  Initial Tech. Report from IDA in collaboration with LLNL

and UCB in May 1999 (led by IDA).
- UCB version based on Split-C
- based on course project, motivated by Active Messages
- IDA based on AC:
-  think about “GUPS” or histogram; “just do it” programs

• UPC Consortium controls the language spec:
- UPC is a community effort, well beyond UCB/LBNL

- ARSC, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS, Intrepid,
LBNL, LLNL, MTU, NSA, SGI, Sun, UCB, U. Florida, DOD

- Design goals: high performance, expressive, consistent
with C goals, …, portable

• Several compilers, both commercial and open source:
- Cray, HP, IBM, Berkeley, gcc-upc (Intrepid)

2/7/11" Cray XE Training" 6"

2/7/11" Cray XE Training" 7"

UPC Execution
Model"

2/7/11" Cray XE Training" 8"

UPC Execution Model

•  A number of threads working independently in a SPMD
fashion
-  Number of threads specified at compile-time or run-time;

available as program variable THREADS
-  MYTHREAD specifies thread index (0..THREADS-1)
-  upc_barrier is a global synchronization: all wait
-  There is a form of parallel loop that we will see later

•  There are two compilation modes
-  Static Threads mode:

•  THREADS is specified at compile time by the user
•  The program may use THREADS as a compile-time constant

-  Dynamic threads mode:
•  Compiled code may be run with varying numbers of threads

2/7/11" Cray XE Training" 9"

Hello World in UPC

• Any legal C program is also a legal UPC program
•  If you compile and run it as UPC with P threads, it will

run P copies of the program.
• Using this fact, plus the identifiers from the previous

slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

2/7/11" Cray XE Training" 10"

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

- Area of square = r2 = 1
- Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
•  If x2 + y2 < 1, then point is inside circle
• Compute ratio:

- # points inside / # points total
-  π = 4*ratio

r =1

2/7/11" Cray XE Training" 11"

Each thread calls “hit” separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC

• Independent estimates of pi:
 main(int argc, char **argv) {
 int i, hits, trials = 0;
 double pi;

 if (argc != 2)trials = 1000000;
 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();
 pi = 4.0*hits/trials;
 printf("PI estimated to %f.", pi);
 }

2/7/11" Cray XE Training" 12"

Helper Code for Pi in UPC

• Required includes:
 #include <stdio.h>
 #include <math.h>
 #include <upc.h>

• Function to throw dart and calculate where it hits:
 int hit(){
 int const rand_max = 0xFFFFFF;
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);
 } else {
 return(0);
 }
 }

2/7/11" Cray XE Training" 13"

Shared vs. Private
Variables"

2/7/11" Cray XE Training" 14"

Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the private
memory space for each thread.

• Shared variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;

• Shared variables may not have dynamic lifetime: may not
occur in a in a function definition, except as static. Why?

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

2/7/11" Cray XE Training" 15"

Pi in UPC: Shared Memory Style

• Parallel computing of pi, but with a bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_trials = 0;
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 hits += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
 }

shared variable to
record hits

divide work up evenly

accumulate hits

What is the problem with this program?

2/7/11" Cray XE Training" 16"

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

•  In the pictures below, assume THREADS = 4
- Red elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not

2/7/11" Cray XE Training" 17"

Pi in UPC: Shared Array Version

• Alternative fix to the race condition
• Have each thread update a separate counter:

- But do it in a shared array
- Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
}

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

2/7/11" Cray XE Training" 18"

UPC
Synchronization"

2/7/11" Cray XE Training" 19"

UPC Global Synchronization

•  UPC has two basic forms of barriers:
-  Barrier: block until all other threads arrive

 upc_barrier
-  Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

•  Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {
 ...
 upc_barrier MERGE_BARRIER;
} else {
 ...
 upc_barrier MERGE_BARRIER;
}

2/7/11" Cray XE Training" 20"

Synchronization - Locks

•  Locks in UPC are represented by an opaque type:
upc_lock_t

•  Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);

 allocates 1 lock, pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);

 allocates 1 lock, pointer to one thread
•  To use a lock:

void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

 use at start and end of critical region
•  Locks can be freed when not in use

void upc_lock_free(upc_lock_t *ptr);

2/7/11" Cray XE Training" 21"

Pi in UPC: Shared Memory Style

• Parallel computing of pi, without the bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits
locally

accumulate
across threads

2/7/11" Cray XE Training" 22"

Recap: Private vs. Shared Variables in UPC

• We saw several kinds of variables in the pi example
- Private scalars (my_hits)
- Shared scalars (hits)
- Shared arrays (all_hits)
- Shared locks (hit_lock)

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
my_hits: my_hits: my_hits:

Thread0 Thread1 Threadn

all_hits[0]:

hits:

all_hits[n]: all_hits[1]:

hit_lock:

where:
n=Threads-1

2/7/11" Cray XE Training" 23"

UPC Collectives"

2/7/11" Cray XE Training" 24"

UPC Collectives in General

•  The UPC collectives interface is in the language spec:
- http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

•  It contains typical functions:
- Data movement: broadcast, scatter, gather, …
- Computational: reduce, prefix, …

•  Interface has synchronization modes:
- Avoid over-synchronizing (barrier before/after is simplest

semantics, but may be unnecessary)
- Data being collected may be read/written by any thread

simultaneously
•  Simple interface for collecting scalar values (int, double,…)

- Berkeley UPC value-based collectives
- Works with any compiler
- http://upc.lbl.gov/docs/user/README-collectivev.txt

2/7/11" Cray XE Training" 25"

Pi in UPC: Data Parallel Style

• The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

• Use a reduction for better scalability

 #include <bupc_collectivev.h>
 // shared int hits;
 main(int argc, char **argv) {
 ...
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 my_hits = // type, input, thread, op
 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*my_hits/trials);
 }

 Berkeley collectives
no shared variables

barrier implied by collective

2/7/11" Cray XE Training" 26"

UPC (Value-Based) Collectives in General

• General arguments:
-  rootthread is the thread ID for the root (e.g., the source of a broadcast)
- All 'value' arguments indicate an l-value (i.e., a variable or array element, not a literal

or an arbitrary expression)
- All 'TYPE' arguments should the scalar type of collective operation
- upc_op_t is one of: UPC_ADD, UPC_MULT, UPC_AND, UPC_OR, UPC_XOR,

UPC_LOGAND, UPC_LOGOR, UPC_MIN, UPC_MAX
•  Computational Collectives
- TYPE bupc_allv_reduce(TYPE, TYPE value, int rootthread, upc_op_t reductionop)
- TYPE bupc_allv_reduce_all(TYPE, TYPE value, upc_op_t reductionop)
- TYPE bupc_allv_prefix_reduce(TYPE, TYPE value, upc_op_t reductionop)

• Data movement collectives
- TYPE bupc_allv_broadcast(TYPE, TYPE value, int rootthread)
- TYPE bupc_allv_scatter(TYPE, int rootthread, TYPE *rootsrcarray)
- TYPE *bupc_allv_gather(TYPE, TYPE value, int rootthread, TYPE *rootdestarray)

•  Gather a 'value' (which has type TYPE) from each thread to 'rootthread', and place them (in
order by source thread) into the local array 'rootdestarray' on 'rootthread'.

- TYPE *bupc_allv_gather_all(TYPE, TYPE value, TYPE *destarray)
- TYPE bupc_allv_permute(TYPE, TYPE value, int tothreadid)

•  Perform a permutation of 'value's across all threads. Each thread passes a value and a
unique thread identifier to receive it - each thread returns the value it receives.

2/7/11" Cray XE Training" 27"

local

shared

Full UPC Collectives
- Value-based collectives pass in and return scalar values
- But sometimes you want to collect over arrays
- When can a collective argument begin executing?

•  Arguments with affinity to thread i are ready when thread i calls the
function; results with affinity to thread i are ready when thread i returns.

•  This is appealing but it is incorrect: In a broadcast, thread 1 does not
know when thread 0 is ready.

0 2 1

dst dst dst

src src src

Slide source: Steve Seidel, MTU

2/7/11" Cray XE Training" 28"

UPC Collective: Sync Flags

•  In full UPC Collectives, blocks of data may be collected
•  A extra argument of each collective function is the sync mode of type

upc_flag_t.
•  Values of sync mode are formed by or-ing together a constant of the form

UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X
and Y may be NO, MY, or ALL.

•  If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNC), then if X is:
-  NO the collective function may begin to read or write data when the first thread

has entered the collective function call,
- MY the collective function may begin to read or write only data which has

affinity to threads that have entered the collective function call, and
-  ALL the collective function may begin to read or write data only after all threads

have entered the collective function call
•  and if Y is

-  NO the collective function may read and write data until the last thread has
returned from the collective function call,

- MY the collective function call may return in a thread only after all reads and
writes of data with affinity to the thread are complete3, and

-  ALL the collective function call may return only after all reads and writes of data
are complete.

2/7/11" Cray XE Training" 29"

Work Distribution
Using upc_forall

2/7/11" Cray XE Training" 30"

Example: Vector Addition

 /* vadd.c */
 #include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {

 int i;
 for(i=0; i<N; i++)

 if (MYTHREAD == i%THREADS)
 sum[i]=v1[i]+v2[i];

}

• Questions about parallel vector additions: "
• How to layout data (here it is cyclic)"
• Which processor does what (here it is “owner computes”)"

cyclic layout

owner computes

2/7/11" Cray XE Training" 31"

•  The idiom in the previous slide is very common
-  Loop over all; work on those owned by this proc

•  UPC adds a special type of loop
 upc_forall(init; test; loop; affinity)
 statement;

•  Programmer indicates the iterations are independent
-  Undefined if there are dependencies across threads

•  Affinity expression indicates which iterations to run on each thread.
It may have one of two types:
-  Integer: affinity%THREADS is MYTHREAD
-  Pointer: upc_threadof(affinity) is MYTHREAD

•  Syntactic sugar for loop on previous slide
-  Some compilers may do better than this, e.g.,

 for(i=MYTHREAD; i<N; i+=THREADS)

-  Rather than having all threads iterate N times:
 for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)

Work Sharing with upc_forall()

2/7/11" Cray XE Training" 32"

Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];
}

• The vadd example can be rewritten as follows
• Equivalent code could use “&sum[i]” for affinity
• The code would be correct but slow if the affinity

expression were i+1 rather than i.

The cyclic data
distribution may
perform poorly on
some machines"

2/7/11" Cray XE Training" 33"

Distributed Arrays
in UPC"

2/7/11" Cray XE Training" 34"

Blocked Layouts in UPC

#define N 100*THREADS
shared int [*] v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; &sum[i])

 sum[i]=v1[i]+v2[i];
}

•  If this code were doing nearest neighbor averaging (3pt stencil) the
cyclic layout would be the worst possible layout.

•  Instead, want a blocked layout
•  Vector addition example can be rewritten as follows using a blocked

layout

blocked layout

2/7/11" Cray XE Training" 35"

Layouts in General

• All non-array objects have affinity with thread zero.
• Array layouts are controlled by layout specifiers:

- Empty (cyclic layout)
- [*] (blocked layout)
- [0] or [] (indefinite layout, all on 1 thread)
- [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

• The affinity of an array element is defined in terms of:
- block size, a compile-time constant
- and THREADS.

• Element i has affinity with thread
 (i / block_size) % THREADS

•  In 2D and higher, linearize the elements as in a C
representation, and then use above mapping

2/7/11" Cray XE Training" 36"

Pointers to Shared vs. Arrays

#define N 100*THREADS
shared int v1[N], v2[N], sum[N];
void main() {

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++)

 if (i %THREADS= = MYTHREAD)
 sum[i]= *p1 + *p2;

}

•  In the C tradition, array can be access through pointers"
• Here is the vector addition example using pointers"

v1

p1

2/7/11" Cray XE Training" 37"

UPC Pointers

Local Shared
Private p1 p2

Shared p3 p4

Where does the pointer point?

Where
does the
pointer
reside?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */
Shared to local memory (p3) is not recommended.

2/7/11" Cray XE Training" 38"

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

Pointers to shared often require more storage and are more costly to
dereference; they may refer to local or remote memory.

2/7/11" Cray XE Training" 39"

Dynamic Memory Allocation in UPC

• Dynamic memory allocation of shared memory is
available in UPC

• Functions can be collective or not
- A collective function has to be called by every

thread and will return the same value to all of them

2/7/11" Cray XE Training" 40"

Global Memory Allocation
shared void *upc_global_alloc(size_t nblocks,

size_t nbytes);

 nblocks : number of blocks
 nbytes : block size

•  Non-collective: called by one thread
•  The calling thread allocates a contiguous memory space in the

shared space with the shape:
 shared [nbytes] char[nblocks * nbytes]

shared void *upc_all_alloc(size_t nblocks,
size_t nbytes);

•  The same result, but must be called by all threads together
•  All the threads will get the same pointer
void upc_free(shared void *ptr);
•  Non-collective function; frees the dynamically allocated shared

memory pointed to by ptr

2/7/11" Cray XE Training" 41"

Distributed Arrays Directory Style

• Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));

directory

• These are also more general:
• Multidimensional, unevenly distributed
• Ghost regions around blocks

physical and
conceptual
3D array
layout

2/7/11" Cray XE Training" 42"

Performance of
UPC"

2/7/11" Cray XE Training" 43"

PGAS Languages have Performance Advantages
Strategy for acceptance of a new language
• Make it run faster than anything else

Keys to high performance
• Parallelism:

- Scaling the number of processors
• Maximize single node performance

- Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)

• Avoid (unnecessary) communication cost
- Latency, bandwidth, overhead
- Berkeley UPC and Titanium use GASNet

communication layer
• Avoid unnecessary delays due to dependencies

- Load balance; Pipeline algorithmic dependencies

2/7/11" Cray XE Training" 44"

One-Sided vs Two-Sided

•  A one-sided put/get message can be handled directly by a network
interface with RDMA support
- Avoid interrupting the CPU or storing data from CPU (preposts)

•  A two-sided messages needs to be matched with a receive to
identify memory address to put data
- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

Ping Pong Latency

1

10

100

1000

10000

Ti
m

e
(u

s)

UPC MPI - Large Pages MPI - Regular Pages

PingPong Bandwidths

0

1000

2000

3000

4000

5000

6000

7000

B
an

dw
id

th
 (M

B
/s

)

Message Size (Bytes)

UPC MPI Large MPI

2/7/11" Cray XE Training" 47"

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

Joint work with UPC Group"

2/7/11" Cray XE Training" 48"

Communication Strategies for 3D FFT

chunk = all rows with same destination

pencil = 1 row

•  Three approaches:
• Chunk:

•  Wait for 2nd dim FFTs to finish
•  Minimize # messages

• Slab:
•  Wait for chunk of rows destined for 1

proc to finish
•  Overlap with computation

• Pencil:
•  Send each row as it completes
•  Maximize overlap and
•  Match natural layout

slab = all rows in a single plane with
same destination

Joint work with Chris Bell, Rajesh
Nishtala, Dan Bonachea!

FFT Performance on BlueGene/P

HPC Challenge Peak as of July 09 is
~4.5 Tflops on 128k Cores

•  PGAS implementations
consistently outperform MPI

•  Leveraging communication/
computation overlap yields
best performance

•  More collectives in flight
and more communication
leads to better
performance

•  At 32k cores, overlap
algorithms yield 17%
improvement in overall
application time

•  Numbers are getting close to
HPC record

•  Future work to try to beat
the record

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

49

G
O
O
D

2/7/11" Cray XE Training" 50"

NAS FT Variants Performance Summary

•  Slab is always best for MPI; small message cost too high
•  Pencil is always best for UPC; more overlap

Joint work with Chris Bell,
Rajesh Nishtala, Dan Bonachea!

.5 Tflops

2/7/11" Cray XE Training" 51"

Case Study: LU Factorization

•  Direct methods have complicated dependencies
- Especially with pivoting (unpredictable communication)
- Especially for sparse matrices (dependence graph with holes)

•  LU Factorization in UPC
- Use overlap ideas and multithreading to mask latency
- Multithreaded: UPC threads + user threads + threaded BLAS

•  Panel factorization: Including pivoting
•  Update to a block of U
•  Trailing submatrix updates

•  Status:
- Dense LU done: HPL-compliant
- Sparse version underway

Joint work with Parry Husbands!

2/7/11" Cray XE Training" 52"

UPC HPL Performance

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

•  n = 32000 on a 4x4 process grid
- ScaLAPACK - 43.34 GFlop/s (block size = 64)
- UPC - 70.26 Gflop/s (block size = 200)

X1 Linpack Performance

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
Fl

op
/s

MPI/HPL

UPC

Opteron Cluster
Linpack

Performance

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix Linpack
Performance

0

20

40

60

80

100

120

140

160

Alt/32

G
Fl

op
/s

MPI/HPL

UPC

• MPI HPL numbers
from HPCC
database

• Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

Joint work with Parry Husbands!

Application Work in PGAS

• Network simulator in UPC (Steve Hofmeyr, LBNL)
• Rea-space multigrid (RMG) quantum mechanics

(Shirley Moore, UTK)
•  Landscape analysis, i.e., “Contributing Area

Estimation” in UPC (Brian Kazian, UCB)
• GTS Shifter in CAF (Preissl, Wichmann,

Long, Shalf, Ethier,
Koniges, LBNL,
Cray, PPPL)

2/7/11" Cray XE Training" 54"

Summary

• UPC designed to be consistent with C
- Some low level details, such as memory layout are

exposed
- Ability to use pointers and arrays interchangeably

• Designed for high performance
- Memory consistency explicit
- Small implementation

• Berkeley compiler (used for next homework)
http://upc.lbl.gov

•  Language specification and other documents
http://upc.gwu.edu

PGAS Languages for Manycore

•  PGAS memory are a good fit to machines with explicitly managed
memory (local store)
- Global address space implemented as DMA reads/writes
- New “vertical” partition of memory needed for on/off chip, e.g.,

upc_offchip_alloc
- Non-blocking features of UPC put/get are useful

•  SPMD execution model needs to be adapted to heterogeneity

DMA"

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip

l: m: Private on-chip

Shared
off-chip
DRAM

Computer Node

CPU Memory

GPU

GPU
Mem
ory

CPU CPU

GPU

GPU
Mem
ory

Computer Node

CPU Memory

GPU

GPU
Mem
ory

CPU CPU

GPU

GPU
Mem
ory

Network

PGAS

2/7/11" 55"Cray XE Training"

